Tristetraprolin suppresses the EMT through the down-regulation of Twist1 and Snail1 in cancer cells

نویسندگان

  • Nal Ae Yoon
  • Hyun Gun Jo
  • Unn Hwa Lee
  • Ji Hye Park
  • Ji Eun Yoon
  • Jinhyun Ryu
  • Sang Soo Kang
  • Young Joo Min
  • Seong-A Ju
  • Eun Hui Seo
  • In Young Huh
  • Byung Ju Lee
  • Jeong Woo Park
  • Wha Ja Cho
چکیده

Inhibition of epithelial-mesenchymal transition (EMT)-inducing transcription factors Twist and Snail prevents tumor metastasis but enhances metastatic growth. Here, we report an unexpected role of a tumor suppressor tristetraprolin (TTP) in inhibiting Twist and Snail without enhancing cellular proliferation. TTP bound to the AU-rich element (ARE) within the mRNA 3'UTRs of Twist1 and Snail1, enhanced the decay of their mRNAs and inhibited the EMT of cancer cells. The ectopic expression of Twist1 or Snail1 without their 3'UTRs blocked the inhibitory effects of TTP on the EMT. We also observed that TTP overexpression suppressed the growth of cancer cells. Our data propose a new model whereby TTP down-regulates Twist1 and Snail1 and inhibits both the EMT and the proliferation of cancer cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiogenesis, Metastasis, and the Cellular Microenvironment Temporal and Spatial Cooperation of Snail1 and Twist1 during Epithelial–Mesenchymal Transition Predicts for Human Breast Cancer Recurrence

Epithelial–mesenchymal transition (EMT) is a normal developmental program that is considered to also play an important role in cancer metastasis. Ultimate inducers of EMT are transcriptional repressors that individually can induce experimental EMT, yet in many cells, particularly cancer cells, multiple inducers are expressed simultaneously.Why, and if, and how they interact to regulate EMT is u...

متن کامل

Temporal and spatial cooperation of Snail1 and Twist1 during epithelial-mesenchymal transition predicts for human breast cancer recurrence.

Epithelial-mesenchymal transition (EMT) is a normal developmental program that is considered to also play an important role in cancer metastasis. Ultimate inducers of EMT are transcriptional repressors that individually can induce experimental EMT, yet in many cells, particularly cancer cells, multiple inducers are expressed simultaneously. Why, and if, and how they interact to regulate EMT is ...

متن کامل

EMT-associated factors promote invasive properties of uveal melanoma cells

PURPOSE Transcription factors regulating the epithelial-to-mesenchymal transition (EMT) program contribute to carcinogenesis and metastasis in many tumors, including cutaneous melanoma. However, little is known about the role of EMT factors in the growth and metastatic dissemination of uveal melanoma cells. Here, we analyzed the expression and functions of the EMT factors ZEB1, Twist1, and Snai...

متن کامل

Berberine suppresses migration of MCF-7 breast cancer cells through down-regulation of chemokine receptors

Objective(s): Berberine is one of the main alkaloids and it has been proven to have different pharmacological effects including inhibition of cell cycle and progression of apoptosis in various cancerous cells; however, its effects on cancer metastasis are not well known. Cancer cells obtain the ability to change their chemokine system and convert into metastatic cells. In this study, we examine...

متن کامل

Special AT-rich sequence-binding protein-1 participates in the maintenance of breast cancer stem cells through regulation of the Notch signaling pathway and expression of Snail1 and Twist1

The stem cell populations in cancerous tissues and cell lines vary widely and are often associated with aggressive cases of breast cancer. Despite research on the topic, the mechanism underlying the regulation of the breast cancer stem cell (BCSC) population within tumors remains to be fully elucidated. To investigate the function of special AT‑rich sequence‑binding protein‑1 (SATB1) in the mai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016